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Problem (8.1): Prove the BAC–CAB Rule and Derive the Curl
Identity

(a) Proof of the BAC–CAB Identity:
Show that for any three vectors A, B, and C,

A× (B×C) = B(A ·C)−C(A ·B). (7.120)

Proof: Using index notation with the Levi-Civita symbol ϵijk (and Einstein summation over
repeated indices), write[

A× (B×C)
]
i
= ϵijkAj(B×C)k = ϵijkAjϵklmBlCm.

Using the standard identity
ϵijkϵklm = δilδjm − δimδjl, (7.7)

we obtain [
A× (B×C)

]
i
= (δilδjm − δimδjl)AjBlCm

= Bi(AjCj)− Ci(AjBj).

In vector notation this is equivalent to

A× (B×C) = B(A ·C)−C(A ·B).

(b) Derivation of the Curl Identity:
Show that

∇× (∇×E) = ∇(∇ ·E)−∇2E. (7.121)

Proof: Write the ith component of the double curl:[
∇× (∇×E)

]
i
= ϵijk∂j(∇×E)k = ϵijk∂j

(
ϵklm∂lEm

)
.

Again, using the identity (7.7),
ϵijkϵklm = δilδjm − δimδjl,
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we obtain [
∇× (∇×E)

]
i
= (δilδjm − δimδjl) ∂j∂lEm

= ∂i∂jEj − ∂j∂jEi

= ∂i(∇ ·E)−∇2Ei.

In vector form this is exactly

∇× (∇×E) = ∇(∇ ·E)−∇2E.

Problem (8.2): Capacitance and Energy of a Parallel-Plate Capac-
itor

Assume two parallel plates of area A, separated by a distance d, held at a potential difference V .
(Neglect fringing fields by assuming the plates are part of an infinite capacitor.)

(a) Capacitance via Gauss’ Law:

For an infinite parallel-plate capacitor the electric field between the plates is uniform:

E =
V

d
.

By Gauss’ Law, the surface charge density is

σ = ϵ0E = ϵ0
V

d
.

The total charge on one plate is

Q = σA = ϵ0
V A

d
.

The capacitance is defined as

C =
Q

V
=

ϵ0A

d
.

(b) Displacement Current Equals External Current:

In a capacitor, even though no conduction current flows between the plates, a changing electric
field produces a displacement current. The displacement current density is

JD = ϵ0
∂E

∂t
.

The total displacement current is

ID = ϵ0A
d

dt

(
V

d

)
=

ϵ0A

d

dV

dt
= C

dV

dt
.

By the continuity equation, this displacement current is equal to the conduction current entering
the capacitor.

(c) Stored Energy in Terms of Capacitance:
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The energy density in an electric field is

uE =
1

2
ϵ0E

2.

Thus, the total stored energy is

U = uE · (Ad) = 1

2
ϵ0

(
V

d

)2

(Ad) =
1

2

ϵ0A

d
V 2 =

1

2
CV 2.

(d) Energy Storage with a 10 V, 10 A·h Battery:

A battery rated at 10 V and 10 A·h delivers energy:

E = V × (Ampere-hours) = 10V× (10A · h).

Since 1A · h = 3600C, the total charge is 10× 3600 = 36000C and the energy is

E = 10V× 36000C = 360 000 J.

To store this energy in a capacitor with plate separation d = 10−6m (1 µm) and vacuum dielectric
(so C = ϵ0A/d), the stored energy is

U =
1

2
CV 2 =

1

2

ϵ0A

d
V 2.

Set U = 360 000 J and solve for A:

A =
2Ud

ϵ0V 2
.

Substitute U = 3.6× 105 J, d = 10−6m, ϵ0 ≈ 8.85× 10−12 F/m, and V = 10V:

A =
2× 3.6× 105 × 10−6

8.85× 10−12 × 100
≈ 0.72

8.85× 10−10
≈ 8.14× 108m2.

This enormous area is required.

If each capacitor plate is a square of side 0.1m (area 0.01m2), the number of plates needed is

N =
8.14× 108

0.01
= 8.14× 1010.

If these plates are stacked with a spacing of 10−6m each, the total height is

H = N × 10−6m ≈ 8.14× 104m (about 81 km).

Problem (8.3): Magnetic Field and Energy in a Solenoid

(a) Magnetic Field of an Infinite Solenoid:

For an infinite solenoid with n turns per meter carrying a current I, use Ampère’s Law:∮
H · dl = Ienc.
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Choosing a rectangular Amperian loop inside the solenoid, the field is uniform and parallel to the
axis, so

H = nI.

In SI units, the magnetic flux density is

B = µ0H = µ0nI.

(b) Energy Stored in a Solenoid:

The energy density in a magnetic field is

uB =
B2

2µ0
.

For an ideal solenoid (neglecting fringing) with volume V = πr2l, the total stored energy is

U = uB V =
B2

2µ0
(πr2l) =

(µ0nI)
2

2µ0
πr2l =

µ0n
2I2

2
πr2l.

(c) Outward Force on a 10 T MRI Magnet:

For a 10 T magnet with bore diameter 1 m (radius r = 0.5 m) and length l = 2 m, the magnetic
pressure is given by

P =
B2

2µ0
.

Using B = 10T and µ0 = 4π × 10−7H/m,

P =
100

2(4π × 10−7)
=

100

8π × 10−7
≈ 100

2.51× 10−6
≈ 4× 107N/m2.

The force is this pressure times the cross-sectional area of the bore:

A = π(0.5)2 ≈ 0.785m2,

so
F ≈ 4× 107 × 0.785 ≈ 3.14× 107N (∼ 31MN).

Problem (8.4): Definition of the Ampere

The ampere was formerly defined as:

The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 m apart in vacuum, would produce between these conductors a force equal to 2×10−7N/m.

(a) Verification:

For two long parallel wires separated by r = 1 m, the force per unit length is given by

F

L
=

µ0I
2

2πr
.
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Substitute µ0 = 4π × 10−7H/m and r = 1 m:

F

L
=

4π × 10−7 I2

2π
= 2× 10−7 I2.

Setting F/L = 2× 10−7N/m, we find

2× 10−7 I2 = 2× 10−7 =⇒ I2 = 1 =⇒ I = 1A.

Thus, a current of 1 A produces the stated force.

(b) Discussion:

Defining the ampere via the force between idealized infinite wires depends on a specific geometry
(infinite length, negligible cross-section) and on a force that is not directly fundamental. This
definition can be difficult to realize experimentally with high accuracy.

Problem (8.5): The Kibble Balance

The Kibble balance measures mass by equating mechanical and electrical power. It operates in two
phases.

(a) Static Phase:

A current I passes through a coil in a spatially inhomogeneous magnetic field with a vertical
gradient ∂Bz

∂z . The force on an infinitesimal current element is

dF = I dl×B.

For the vertical (z) component, integrating over the coil yields

Fz = I

(
∂Bz

∂z

)
Leff,

where Leff is an effective length (a geometrical factor of the coil). In equilibrium, this force balances
the gravitational force on the mass mg:

I Leff
∂Bz

∂z
= mg.

(b) Dynamic Phase:

When the coil moves vertically at constant speed v, a voltage is induced by Faraday’s Law:

V = −dΦ

dt
= −v

dΦ

dz
,

where the flux Φ = BzAeff. Hence,

V = −v Aeff
∂Bz

∂z
.

(c) Combining the Results:

From the static phase:

mg = I Leff
∂Bz

∂z
,
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and from the dynamic phase:

V = v Aeff
∂Bz

∂z
.

Eliminating the gradient (and the effective lengths, assuming they are related by the geometry of
the coil), we obtain

mg =
I

v
V,

or

mg =
I V

v
.

This equation expresses the mass in terms of the measurable electrical quantities I, V , and the
velocity v.

(d) Why Measure Voltage and Current Separately?

The measurements are taken in two distinct phases (static for force and dynamic for induced
voltage) because doing so avoids interference between the two effects. If measured simultaneously,
the separation between the electrical and mechanical effects would be ambiguous, and systematic
errors could result.

Problem (8.6): Estimating Electric Field Strengths from Radiation

(a) Sunlight:

Sunlight at peak delivers a power density I = 1000W/m2. The relation between the intensity and
the electric field amplitude is:

I =
1

2
cϵ0E

2,

so

E =

√
2I

cϵ0
.

Using c = 3× 108m/s and ϵ0 = 8.85× 10−12 F/m:

E =

√
2× 1000

3× 108 × 8.85× 10−12
≈

√
2000

2.655× 10−3
≈

√
7.53× 105 ≈ 868V/m.

(b) Focused Laser Beam:

For 1 W of power focused to an area A:

• If A = 1mm2 = 10−6m2, then the intensity is

I =
1W

10−6m2
= 106W/m2.

The electric field amplitude is

E =

√
2× 106

3× 108 × 8.85× 10−12
≈

√
7.53× 108 ≈ 27.5 kV/m.
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• If focused to the diffraction limit, say A = 1µm2 = 10−12m2, then

I =
1

10−12
= 1012W/m2,

and

E =

√
2× 1012

3× 108 × 8.85× 10−12
≈

√
7.53× 1014 ≈ 8.68× 107V/m,

or roughly 87 MV/m.
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